
COMP 520 - Compilers

Lecture 21 – LLVM, JIT Compilers

1

Announcements

Please do course evaluations!

• Final Exam is 5/9 at 4:00pm

• The exam is written to be taken in 90 minutes, but I’m
going to give you the full 180 minutes should you
desire it.

2
COMP 520: Compilers – S. Ali

COMP-750

• I recommend this class, but keep in mind, COMP-750
assumes you are taking at most one other class.

•Very difficult class even if you are only taking one
other.

3
COMP 520: Compilers – S. Ali

Interesting ID Errors

•Can access only the top-most class’s variables when
multiple inherited fields use the same variable.

•Assume A, B, C all contain public: int x;

4
COMP 520: Compilers – S. Ali

Virtual Address Table vs VAT Pointer
• Either works, but the primary difference is two memory

deference operations vs one
• This memory dereference is already very slow. Turns out

the reason is because the method address is a location in
the code section, but the VAT will be in the heap, so you go
to the heap to eventually load code in two possibly very
different locations.
• With a VAT pointer, you might have two different cache

lines for the VAT pointer and the VAT itself.
• Can cause cache interference galore!

5
COMP 520: Compilers – S. Ali

PA4 Overview

6
COMP 520: Compilers – S. Ali

LocalDecl- ParameterDecl & VarDecl

7
COMP 520: Compilers – S. Ali

x [return addr] Old RBP Local var1 Local var2

RBP
RSP+16

RBP+8
RSP+24

RBP-8
RSP+8

RBP-16
RSP

RBP+16
RSP+32

ParameterDecl VarDecl

FieldDecl- non-static

8
COMP 520: Compilers – S. Ali

var1 var2 var3 var4 …

+16+8 +24 +32Object
Base

Some Variable’s value
is a heap address

MethodDecl

• Start off with a stack frame

• End with removing the stack frame

• If it is the main method, then…
• Consider static vars on the stack
• End with a sys_exit

9
COMP 520: Compilers – S. Ali

push rbp
mov rbp,rsp

mov rsp,rbp
pop rbp

Variable Access

• If the variable has a LocalDecl (parameter or VarDecl)
• Access the variable from [rbp+VD.offset]

• If the variable has a FieldDecl:
• If it is static, then access however you access static variables

• Otherwise, the FieldDecl has an object offset, and access it from
some context point (base address in the heap)

10
COMP 520: Compilers – S. Ali

QRef

• If it is static, access static variable, otherwise…

•Visit the LHS to get the heap address, and once again,
the RHS is a FieldDecl and has an objOffset, so we can
access the variable as normal

11
COMP 520: Compilers – S. Ali

Just-in-time Compilers

12
COMP 520: Compilers – S. Ali

JIT Compilation

• Idea:
• Partially compile parts of a program
• Compile more of the program as needed
• A mix of runtime states:

• Can be running the program normally

• Program may return to a “higher-level” runtime where it
returns control to the JIT compiler

13
COMP 520: Compilers – S. Ali

Step 1: Compile a part of the code

14
COMP 520: Compilers – S. Ali

IL x64
Accept: Output:

Language

x64
User
(x64)

Code
Part

IL

Code
Part

x64

Step 2: On-demand (JIT) compile
new code

15
COMP 520: Compilers – S. Ali

IL x64
Accept: Output:

Compiler
Language

…

New
Code

IL

New
Code

x64

New
Code

x64

Existing
Binary

x64

User
(x64)

New
Binary

x64

Accomplished via a Merge Process

User
(x64)

Existing
Binary

x64

User
(x64)

Change state (transfer control to JIT compiler, then merge, then resume with new binary)

Problem Statements

1. How much initial/subsequent code to JIT compile?

2. How/When do I invoke the on-demand JIT compiler?

3. How do I merge the two binaries together?

4. What does the entire process look like?
(Note, the final binary contains the JIT compiler in it)

16
COMP 520: Compilers – S. Ali

First, let’s compile the JIT compiler

17
COMP 520: Compilers – S. Ali

Code

IL IL x64

x64

Machine
(User)

Code

x64

Machine
(User)

Language

Accept: Output:

IL x64

x64
Language

Accept: Output:

C++ x64

…
Language

Accept: Output:

IL x64

C++
Language

Accept: Output:

GOAL

JIT Compiler
Source

(Write this)
Full details on this
will be discussed.

Need to Compile the Compiler

What we want
(Binary Blob)

We will think of this
like a library

or shared objectGCC/G++

How much initial code to compile?

•On runtime, we have our input file in IL

•How much do we compile to start the program?

18
COMP 520: Compilers – S. Ali

Full
Code

IL

Init
Code

IL

⊆

IL x64

x64
Language

Accept: Output:

Init
Code

IL

User
(x64)

Init
Code

x64
User
(x64)

Initial Code – One method at a time

• Entrypoint in the IL makes sense. Consider:

void main(char* argv[], int argn) {

 bool debugMode = argn > 1;

 LoadData(debugMode);

 MainProgram::Instance()->Run();

 Cleanup();

}

19
COMP 520: Compilers – S. Ali

Method Compilation

bool debugMode = argn > 1;

20
COMP 520: Compilers – S. Ali

cmp [rbp+24],1

setg byte ptr[rbp-8]

Method Compilation (2)

bool debugMode = argn > 1;

LoadData(debugMode);

21
COMP 520: Compilers – S. Ali

cmp [rbp+24],1

setg byte ptr[rbp-8]

call ???

Unknown JIT Entity

22
COMP 520: Compilers – S. Ali

cmp [rbp+16],1

setg byte ptr[rbp-8]

call LoadData???

When compiling this
instruction, we don’t
actually have LoadData
compiled in native
x64 code. (Infact, we’re
compiling our main
function, nothing else is
compiled yet!)

Unknown JIT Entity (2)

23
COMP 520: Compilers – S. Ali

cmp [rbp+16],1

setg byte ptr[rbp-8]

call JIT(LoadData)

Generate a call to a method in the JIT
compiler. Additionally, the “LoadData”
parameter is associated with:

In the JIT compiler:

pushad
if(LoadData already compiled) {
 popad, call LoadData
} else ???

Load
Data

IL

Unknown JIT Entity (3)

24
COMP 520: Compilers – S. Ali

cmp [rbp+16],1

setg byte ptr[rbp-8]

call JIT(LoadData)
IL x64

C++
Language

Accept: Output:

Load
DataFn

IL

Load
DataFn

x64

25
COMP 520: Compilers – S. Ali

cmp [rbp+16],1

setg byte ptr[rbp-8]

call JIT(LoadData)

…

IL x64

C++
Language

Accept: Output:

Load
DataFn

IL

Load
DataFn

x64

If Not
Compiled

If Compiled

Return

Gritty Details

•How would you minimally define a program’s state?

26
COMP 520: Compilers – S. Ali

Gritty Details (2)

•How would you minimally define a program’s state?

• Let’s assume very simple hardware:

• The register file
• Including the instruction pointer (RIP)

• The program’s memory space (stack and heap)
• Misc items (handles, pipes, file descriptors, control page,

etc.)

27
COMP 520: Compilers – S. Ali

Gritty Details (3)

• The register file: how to go from code to compiler?
• If we use any registers, the program code might mess up.
• Consider calling your JIT method when a variable is live in

a register, might accidentally write over the live variable.

• To solve this problem: use the instruction pushad
(pushes all registers on the stack)

• Before calling the method, use popad to restore the
register state

28
COMP 520: Compilers – S. Ali

Gritty Details (4)

•Memory space (stack, heap)
• Because we created the JIT compiler, we know how the

stack space is used.
• For example, in our code, we have a local variable in

[rbp-8] but we never moved rsp forward.
• Determine the maximum amount of “unclaimed” stack

space that contains live data, and move rsp so that it
always points to ACTUALLY unused stack space.

• E.g., sub rsp, 0x100, then after the popad, add rsp,0x100

29
COMP 520: Compilers – S. Ali

Gritty Details (5)

•Misc Items (file descriptors, etc.)
• Just don’t touch these in the JIT compiler, and they will

remain in the same state.

30
COMP 520: Compilers – S. Ali

Let’s continue

31
COMP 520: Compilers – S. Ali

bool debugMode = argn > 1;

LoadData(debugMode);

cmp [rbp+24],1

setg byte ptr[rbp-8]

invoke JIT(LoadFn)

Let’s use a shorthand for “sub rsp,0x100, pushad, call, popad, add rsp,0x100” and call it invoke.
Invoke will also push parameters on the stack. So far so good…

Problem: Virtual Method Call

32
COMP 520: Compilers – S. Ali

bool debugMode = argn > 1;

LoadData(debugMode);

mp = MainProgram::Instance();

mp->run(); // virtual method

cmp [rbp+24],1

setg byte ptr[rbp-8]

invoke JIT(LoadFn)

invoke JIT(MP::Instance)

mov [rbp-16], rax

call [rax+8]

Virtual method call is a problem,
What do I pass to my JIT method??

Virtual Methods in JIT
• Need to be clever and solution will be specific to the

hardware.

• Original code: call [rax+8]
• Consider:
 sub rsp,0x100
 pushad
 push [rax+8]
 push SpecialIdentifier
 call JIT

33
COMP 520: Compilers – S. Ali

JIT(-1, MethodAddr)
…
Inside the JIT method:
“if MethodAddr is a known
address, then call it,
otherwise… PROBLEM!!”

Virtual Methods in JIT (2)
• Need to be clever and solution will be specific to the hardware.

• Original code: call [rax+8]
• Consider:
 sub rsp,0x100
 pushad
 push rax
 push 8
 push SpecialIdentifier
 call JIT

34
COMP 520: Compilers – S. Ali

JIT(-1, 8, object)
…
If the object is sent along with the
VAT index, then we know what the
method should be, and can find the
associated IL code:

Method1
in Class A

IL

Some details omitted

• Need to store object type (RTTI) within objects, and that
way the JIT compiler will know how to find the method in
the IL code.

• There are some solutions WITHOUT RTTI that involve
object allocation occur in the JIT compiler instead of
regular runtime, and the VAT entries are all JIT methods.

• Takeaway: tons of ways to be clever here.

35
COMP 520: Compilers – S. Ali

Binary Merging
• In our example, handled by having the JIT compiler as

a loaded library inside our binary.

•Often, the JIT compiler is inside of the initial binary,
and the IL code is too. (Not always, but it’s faster)

36
COMP 520: Compilers – S. Ali

Code

x64
≡

Contains: IL code and JIT compiler

x64

Code

IL
x64

IL x64

Final Process

• You actually need to write a compiler that writes a JIT
compiler specific to your input code, and that input
code also needs to be converted to IL code that calls
the compiled JIT compiler.

•Okay, that’s a lot of words. But why?

37
COMP 520: Compilers – S. Ali

x64

Compiler creates IL and JIT

38
COMP 520: Compilers – S. Ali

Code

C++ C++ IL+JIT

x64

Machine
(Dev)

Code

IL

Machine
(User)

Language

Accept: Output:

IL x64

x64
Language

Accept: Output:

x64

Compiler creates IL and JIT

39
COMP 520: Compilers – S. Ali

Code

C++ C++ IL+JIT

x64

Machine
(Dev)

Code

IL

Machine
(User)

Language

Accept: Output:

IL x64

x64
Language

Accept: Output:

Contains mappings from method
names to parts in the IL code.

When JIT is invoked, find the
associated IL code, check if it was
already compiled, and if not,
compile IL code, and patch the
jump through.

Thus: need a table based upon the
original code.

LLVM –
Let’s look at modern compilers

40
COMP 520: Compilers – S. Ali

Kaleidoscope: An LLVM Tutorial

•https://llvm.org/docs/tutorial/

• Let’s look at how we can create a modern compiler

•We can compare and contrast with what we had to do

41
COMP 520: Compilers – S. Ali

https://llvm.org/docs/tutorial/

Step 1: The Lexer/Scanner

•https://llvm.org/docs/tutorial/MyFirstLanguageFronte
nd/LangImpl01.html#the-lexer

• Idea: accumulate single letters at a time and store
them in “Tokens”

•After accumulating a string, determine the token type.
For example: tok_identifier, tok_number, etc.

42
COMP 520: Compilers – S. Ali

https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl01.html#the-lexer
https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl01.html#the-lexer

Step 1: The Lexer/Scanner
• https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl01.html#the-lexer

43
COMP 520: Compilers – S. Ali

https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl01.html#the-lexer

Step 1: The Lexer/Scanner - miniJava

• In comparison, what you learned in this class:

• Techniques:
• Make everything a Token or…
• Reduce the types of Tokens

• 𝜺-closure and conversion from an NFA to a DFA

• Can pass on/reduce the burden of context to later stages
(e.g. parsing factorial vs negation, or reducing parsing by
making fancy decisions like scanning “[]” as a single Token)

44
COMP 520: Compilers – S. Ali

Step 2 – Implementing a Parser and AST

•https://llvm.org/docs/tutorial/MyFirstLanguageFronte
nd/LangImpl02.html

•An AST contains the constructs of the input language.

• Should closely model the language

45
COMP 520: Compilers – S. Ali

https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl02.html
https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl02.html

Step 2 – Implementing a Parser and AST

• https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl02.html

46
COMP 520: Compilers – S. Ali

https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl02.html

Precedence in LLVM

•Need to only specify precedence:

•Assign each Operator token the
relevant precedence value.

• Loop through and find highest precedence operations
in an Expression, and resolve those first.

47
COMP 520: Compilers – S. Ali

Step 2 – Parsing and ASTs in miniJava

• We learned/discussed Parsing:
• Recursive descent (implemented)
• Shift-Reduce parsing (discussed)
• Push-down automata (you learned this in 455, discussed)

• We discussed ASTs:
• Selection of AST grammars should be to achieve

a separation of concerns
• Stratified grammars can create ASTs with proper precedence

constraints easily (never worry about precedence again)

48
COMP 520: Compilers – S. Ali

LLVM combines PA3 and PA4
• https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl03.html

• In their tutorial for LLVM, only one IDTable (called
NamedValues), a very simple language that doesn’t need SI
or objects or fields.

• In comparison: you learned object oriented contextual
analysis, which is significantly harder.

• CodeGen is actually done per-AST. Each concrete AST
defines a codegen method and generates code that way.

49
COMP 520: Compilers – S. Ali

https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl03.html

LLVM Traversal: “You should try visitors”
• https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl03.html

50
COMP 520: Compilers – S. Ali

https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl03.html

LLVM- Front End vs Back End

• Front-end deals with parsing (think PA1-PA3)

•Back-end deals with code generation

• LLVM has prebuild back-end drivers that will generate
things like x64 or arm

• If you have a custom architecture, will have to do code
generation just like you did with PA4.

51
COMP 520: Compilers – S. Ali

LLVM – Backend programming

• Must specify a register set (number of registers)

• Must specify register overlap (think RAX/EAX/AX/AL)

• Unsurprisingly, would have to do file headers yourself
(can’t quite automate that process)

• Unlike what we did in class, LLVM requires you to go from
the IL to your destination code (instead of from ASTs).

• This is easier as IL is similar to assembly.

52
COMP 520: Compilers – S. Ali

Backend / PA4

•What you did in comparison:
• Did the more difficult output to assembly from ASTs

• This means you are well equipped to output to an IL
then convert from your own IL to real assembly
whenever you need to retarget.

53
COMP 520: Compilers – S. Ali

Backend / PA4 (2)

• LLVM backend tutorial:
https://llvm.org/docs/WritingAnLLVMBackend.html

• Idea: register sets, instruction sets, instruction
scheduling, relation mapping, and branch
construction.

•After that, you create a directed acyclic graph (DAG)
as your instruction selector

54
COMP 520: Compilers – S. Ali

https://llvm.org/docs/WritingAnLLVMBackend.html

Backend / PA4 (3)
Source: Optimization based on LLVM global instruction selection

55
COMP 520: Compilers – S. Ali

Front End

Code Generation

• Idea: several passes to reach usable code

• Similar idea to generating tuple code, then “legalizing”
the concept of unlimited registers by reducing register
usage, generating spillover code, and changing “extra”
registers to memory operations.

•Multiple passes needed to achieve usable code.

56
COMP 520: Compilers – S. Ali

To conclude COMP-520
• “Reflections on Trusting Trust” – Ken Thompson

• Idea: how to compile bugs/backdoors in a compiler that can’t
be discovered unless you analyze the assembly code

• You learned quite a bit more than “how to build a basic
compiler that isn’t practical”
• Use techniques and theory from this class to build modern

and competitive compilers. (Recall MSVS example)
• Ideally, you also learned the importance of time

management when you have a month to work on a
programming project.

57
COMP 520: Compilers – S. Ali

See you at the final!

5/9 at 4pm

Have a great summer!

58
COMP 520: Compilers – S. Ali

End

59

60
COMP 520: Compilers – S. Ali

61
COMP 520: Compilers – S. Ali

62
COMP 520: Compilers – S. Ali

63
COMP 520: Compilers – S. Ali

	Slide 1: COMP 520 - Compilers
	Slide 2: Announcements
	Slide 3: COMP-750
	Slide 4: Interesting ID Errors
	Slide 5: Virtual Address Table vs VAT Pointer
	Slide 6: PA4 Overview
	Slide 7: LocalDecl- ParameterDecl & VarDecl
	Slide 8: FieldDecl- non-static
	Slide 9: MethodDecl
	Slide 10: Variable Access
	Slide 11: QRef
	Slide 12: Just-in-time Compilers
	Slide 13: JIT Compilation
	Slide 14: Step 1: Compile a part of the code
	Slide 15: Step 2: On-demand (JIT) compile new code
	Slide 16: Problem Statements
	Slide 17: First, let’s compile the JIT compiler
	Slide 18: How much initial code to compile?
	Slide 19: Initial Code – One method at a time
	Slide 20: Method Compilation
	Slide 21: Method Compilation (2)
	Slide 22: Unknown JIT Entity
	Slide 23: Unknown JIT Entity (2)
	Slide 24: Unknown JIT Entity (3)
	Slide 25
	Slide 26: Gritty Details
	Slide 27: Gritty Details (2)
	Slide 28: Gritty Details (3)
	Slide 29: Gritty Details (4)
	Slide 30: Gritty Details (5)
	Slide 31: Let’s continue
	Slide 32: Problem: Virtual Method Call
	Slide 33: Virtual Methods in JIT
	Slide 34: Virtual Methods in JIT (2)
	Slide 35: Some details omitted
	Slide 36: Binary Merging
	Slide 37: Final Process
	Slide 38: Compiler creates IL and JIT
	Slide 39: Compiler creates IL and JIT
	Slide 40: LLVM – Let’s look at modern compilers
	Slide 41: Kaleidoscope: An LLVM Tutorial
	Slide 42: Step 1: The Lexer/Scanner
	Slide 43: Step 1: The Lexer/Scanner
	Slide 44: Step 1: The Lexer/Scanner - miniJava
	Slide 45: Step 2 – Implementing a Parser and AST
	Slide 46: Step 2 – Implementing a Parser and AST
	Slide 47: Precedence in LLVM
	Slide 48: Step 2 – Parsing and ASTs in miniJava
	Slide 49: LLVM combines PA3 and PA4
	Slide 50: LLVM Traversal: “You should try visitors”
	Slide 51: LLVM- Front End vs Back End
	Slide 52: LLVM – Backend programming
	Slide 53: Backend / PA4
	Slide 54: Backend / PA4 (2)
	Slide 55: Backend / PA4 (3)
	Slide 56: Code Generation
	Slide 57: To conclude COMP-520
	Slide 58: See you at the final!
	Slide 59: End
	Slide 60
	Slide 61
	Slide 62
	Slide 63

