
COMP 520 - Compilers

Lecture 21 – LLVM, JIT Compilers
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Announcements

Please do course evaluations!

• Final Exam is 5/9 at 4:00pm

• The exam is written to be taken in 90 minutes, but I’m 
going to give you the full 180 minutes should you 
desire it.
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COMP-750

• I recommend this class, but keep in mind, COMP-750 
assumes you are taking at most one other class.

•Very difficult class even if you are only taking one 
other.
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Interesting ID Errors

•Can access only the top-most class’s variables when 
multiple inherited fields use the same variable.

•Assume A, B, C all contain public: int x;
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Virtual Address Table vs VAT Pointer
• Either works, but the primary difference is two memory 

deference operations vs one
• This memory dereference is already very slow. Turns out 

the reason is because the method address is a location in 
the code section, but the VAT will be in the heap, so you go 
to the heap to eventually load code in two possibly very 
different locations.
• With a VAT pointer, you might have two different cache 

lines for the VAT pointer and the VAT itself.
• Can cause cache interference galore!
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PA4 Overview
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LocalDecl- ParameterDecl & VarDecl
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FieldDecl- non-static
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var1 var2 var3 var4 …

+16+8 +24 +32Object
Base

Some Variable’s value 
is a heap address



MethodDecl

• Start off with a stack frame

• End with removing the stack frame

• If it is the main method, then…
• Consider static vars on the stack
• End with a sys_exit
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push rbp
mov rbp,rsp

mov rsp,rbp
pop rbp



Variable Access

• If the variable has a LocalDecl (parameter or VarDecl)
• Access the variable from [rbp+VD.offset]

• If the variable has a FieldDecl:
• If it is static, then access however you access static variables

• Otherwise, the FieldDecl has an object offset, and access it from 
some context point (base address in the heap)
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QRef

• If it is static, access static variable, otherwise…

•Visit the LHS to get the heap address, and once again, 
the RHS is a FieldDecl and has an objOffset, so we can 
access the variable as normal
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Just-in-time Compilers

12
COMP 520: Compilers – S. Ali



JIT Compilation

• Idea:
• Partially compile parts of a program
• Compile more of the program as needed
• A mix of runtime states:

• Can be running the program normally

• Program may return to a “higher-level” runtime where it 
returns control to the JIT compiler
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Step 1: Compile a part of the code
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Step 2: On-demand (JIT) compile
new code

15
COMP 520: Compilers – S. Ali

IL                       x64
Accept: Output:

Compiler
Language

…

New 
Code

IL

New 
Code

x64

New 
Code

x64

Existing 
Binary

x64

User
(x64)

New 
Binary

x64

Accomplished via a Merge Process

User
(x64)

Existing 
Binary

x64

User
(x64)

Change state (transfer control to JIT compiler, then merge, then resume with new binary)



Problem Statements

1. How much initial/subsequent code to JIT compile?

2. How/When do I invoke the on-demand JIT compiler?

3. How do I merge the two binaries together?

4. What does the entire process look like?
(Note, the final binary contains the JIT compiler in it)
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First, let’s compile the JIT compiler
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How much initial code to compile?

•On runtime, we have our input file in IL

•How much do we compile to start the program?
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Initial Code – One method at a time

• Entrypoint in the IL makes sense. Consider:

void main(char* argv[], int argn) {

    bool debugMode = argn > 1;

    LoadData(debugMode);

    MainProgram::Instance()->Run();

    Cleanup();

}
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Method Compilation

bool debugMode = argn > 1;
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cmp [rbp+24],1

setg byte ptr[rbp-8]



Method Compilation (2)

bool debugMode = argn > 1;

LoadData(debugMode);
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cmp [rbp+24],1

setg byte ptr[rbp-8]

call ???



Unknown JIT Entity
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cmp [rbp+16],1

setg byte ptr[rbp-8]

call LoadData???

When compiling this 
instruction, we don’t
actually have LoadData 
compiled in native
x64 code. (Infact, we’re 
compiling our main
function, nothing else is 
compiled yet!)



Unknown JIT Entity (2)

23
COMP 520: Compilers – S. Ali

cmp [rbp+16],1

setg byte ptr[rbp-8]

call JIT(LoadData)

Generate a call to a method in the JIT
compiler. Additionally, the “LoadData”
parameter is associated with:

In the JIT compiler:

pushad
if( LoadData already compiled ) {
    popad, call LoadData
} else ???

Load
Data

IL



Unknown JIT Entity (3)
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cmp [rbp+16],1

setg byte ptr[rbp-8]

call JIT(LoadData)
IL                       x64

C++
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DataFn

x64
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cmp [rbp+16],1

setg byte ptr[rbp-8]

call JIT(LoadData)

…

IL                       x64

C++
Language

Accept: Output:

Load
DataFn

IL

Load
DataFn

x64

If Not
Compiled

If Compiled

Return



Gritty Details

•How would you minimally define a program’s state?
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Gritty Details (2)

•How would you minimally define a program’s state?

• Let’s assume very simple hardware:

• The register file
• Including the instruction pointer (RIP)

• The program’s memory space (stack and heap)
• Misc items (handles, pipes, file descriptors, control page, 

etc.)
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Gritty Details (3)

• The register file: how to go from code to compiler?
• If we use any registers, the program code might mess up.
• Consider calling your JIT method when a variable is live in 

a register, might accidentally write over the live variable.

• To solve this problem: use the instruction pushad
(pushes all registers on the stack)

• Before calling the method, use popad to restore the 
register state
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Gritty Details (4)

•Memory space (stack, heap)
• Because we created the JIT compiler, we know how the 

stack space is used.
• For example, in our code, we have a local variable in

[rbp-8] but we never moved rsp forward.
• Determine the maximum amount of “unclaimed” stack 

space that contains live data, and move rsp so that it 
always points to ACTUALLY unused stack space.

• E.g., sub rsp, 0x100, then after the popad, add rsp,0x100
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Gritty Details (5)

•Misc Items (file descriptors, etc.)
• Just don’t touch these in the JIT compiler, and they will 

remain in the same state.
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Let’s continue
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bool debugMode = argn > 1;

LoadData(debugMode);

cmp [rbp+24],1

setg byte ptr[rbp-8]

invoke JIT(LoadFn)

Let’s use a shorthand for “sub rsp,0x100, pushad, call, popad, add rsp,0x100” and call it invoke.
Invoke will also push parameters on the stack. So far so good…



Problem: Virtual Method Call
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bool debugMode = argn > 1;

LoadData(debugMode);

mp = MainProgram::Instance();

mp->run(); // virtual method

cmp [rbp+24],1

setg byte ptr[rbp-8]

invoke JIT(LoadFn)

invoke JIT(MP::Instance)

mov [rbp-16], rax

call [rax+8]

Virtual method call is a problem,
What do I pass to my JIT method??



Virtual Methods in JIT
• Need to be clever and solution will be specific to the 

hardware.

• Original code: call [rax+8]
• Consider:
 sub rsp,0x100
 pushad
 push [rax+8]
 push SpecialIdentifier
 call JIT
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JIT( -1, MethodAddr )
…
Inside the JIT method:
“if MethodAddr is a known 
address, then call it, 
otherwise… PROBLEM!!”



Virtual Methods in JIT (2)
• Need to be clever and solution will be specific to the hardware.

• Original code: call [rax+8]
• Consider:
 sub rsp,0x100
 pushad
 push rax
 push 8
 push SpecialIdentifier
 call JIT
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JIT( -1, 8, object )
…
If the object is sent along with the 
VAT index, then we know what the 
method should be, and can find the 
associated IL code:

Method1 
in Class A

IL



Some details omitted

• Need to store object type (RTTI) within objects, and that 
way the JIT compiler will know how to find the method in 
the IL code.

• There are some solutions WITHOUT RTTI that involve 
object allocation occur in the JIT compiler instead of 
regular runtime, and the VAT entries are all JIT methods.

• Takeaway: tons of ways to be clever here.
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Binary Merging
• In our example, handled by having the JIT compiler as 

a loaded library inside our binary.

•Often, the JIT compiler is inside of the initial binary, 
and the IL code is too. (Not always, but it’s faster)

36
COMP 520: Compilers – S. Ali

Code

x64
≡

Contains: IL code and JIT compiler

x64

Code

IL
x64

IL               x64



Final Process

• You actually need to write a compiler that writes a JIT 
compiler specific to your input code, and that input 
code also needs to be converted to IL code that calls 
the compiled JIT compiler.

•Okay, that’s a lot of words. But why?
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x64

Compiler creates IL and JIT
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Code

C++ C++                IL+JIT

x64

Machine
(Dev)

Code

IL

Machine
(User)

Language

Accept: Output:

IL                      x64

x64
Language

Accept: Output:



x64

Compiler creates IL and JIT

39
COMP 520: Compilers – S. Ali

Code

C++ C++                IL+JIT

x64

Machine
(Dev)

Code

IL

Machine
(User)

Language

Accept: Output:

IL                      x64

x64
Language

Accept: Output:

Contains mappings from method 
names to parts in the IL code.

When JIT is invoked, find the 
associated IL code, check if it was 
already compiled, and if not, 
compile IL code, and patch the 
jump through.

Thus: need a table based upon the 
original code.



LLVM – 
Let’s look at modern compilers
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Kaleidoscope: An LLVM Tutorial

•https://llvm.org/docs/tutorial/

• Let’s look at how we can create a modern compiler

•We can compare and contrast with what we had to do
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https://llvm.org/docs/tutorial/


Step 1: The Lexer/Scanner

•https://llvm.org/docs/tutorial/MyFirstLanguageFronte
nd/LangImpl01.html#the-lexer

• Idea: accumulate single letters at a time and store 
them in “Tokens”

•After accumulating a string, determine the token type. 
For example: tok_identifier, tok_number, etc.
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https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl01.html#the-lexer
https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl01.html#the-lexer


Step 1: The Lexer/Scanner
• https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl01.html#the-lexer
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https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl01.html#the-lexer


Step 1: The Lexer/Scanner - miniJava

• In comparison, what you learned in this class:

• Techniques:
• Make everything a Token or…
• Reduce the types of Tokens

• 𝜺-closure and conversion from an NFA to a DFA

• Can pass on/reduce the burden of context to later stages 
(e.g. parsing factorial vs negation, or reducing parsing by 
making fancy decisions like scanning “[]” as a single Token)
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Step 2 – Implementing a Parser and AST

•https://llvm.org/docs/tutorial/MyFirstLanguageFronte
nd/LangImpl02.html

•An AST contains the constructs of the input language.

• Should closely model the language
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https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl02.html
https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl02.html


Step 2 – Implementing a Parser and AST

• https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl02.html
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https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl02.html


Precedence in LLVM

•Need to only specify precedence:

•Assign each Operator token the
relevant precedence value.

• Loop through and find highest precedence operations 
in an Expression, and resolve those first.

47
COMP 520: Compilers – S. Ali



Step 2 – Parsing and ASTs in miniJava

• We learned/discussed Parsing:
• Recursive descent (implemented)
• Shift-Reduce parsing (discussed)
• Push-down automata (you learned this in 455, discussed)

• We discussed ASTs:
• Selection of AST grammars should be to achieve 

a separation of concerns
• Stratified grammars can create ASTs with proper precedence 

constraints easily (never worry about precedence again)
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LLVM combines PA3 and PA4
• https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl03.html

• In their tutorial for LLVM, only one IDTable (called 
NamedValues), a very simple language that doesn’t need SI 
or objects or fields.

• In comparison: you learned object oriented contextual 
analysis, which is significantly harder.

• CodeGen is actually done per-AST. Each concrete AST 
defines a codegen method and generates code that way.
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https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl03.html


LLVM Traversal: “You should try visitors”
• https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl03.html
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https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/LangImpl03.html


LLVM- Front End vs Back End

• Front-end deals with parsing (think PA1-PA3)

•Back-end deals with code generation

• LLVM has prebuild back-end drivers that will generate 
things like x64 or arm

• If you have a custom architecture, will have to do code 
generation just like you did with PA4.
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LLVM – Backend programming

• Must specify a register set (number of registers)

• Must specify register overlap (think RAX/EAX/AX/AL)

• Unsurprisingly, would have to do file headers yourself 
(can’t quite automate that process)

• Unlike what we did in class, LLVM requires you to go from 
the IL to your destination code (instead of from ASTs).

• This is easier as IL is similar to assembly.
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Backend / PA4

•What you did in comparison:
• Did the more difficult output to assembly from ASTs

• This means you are well equipped to output to an IL 
then convert from your own IL to real assembly 
whenever you need to retarget.
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Backend / PA4 (2)

• LLVM backend tutorial: 
https://llvm.org/docs/WritingAnLLVMBackend.html

• Idea: register sets, instruction sets, instruction 
scheduling, relation mapping, and branch 
construction.

•After that, you create a directed acyclic graph (DAG) 
as your instruction selector
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https://llvm.org/docs/WritingAnLLVMBackend.html


Backend / PA4 (3)
Source: Optimization based on LLVM global instruction selection
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Front End



Code Generation

• Idea: several passes to reach usable code

• Similar idea to generating tuple code, then “legalizing” 
the concept of unlimited registers by reducing register 
usage, generating spillover code, and changing “extra” 
registers to memory operations.

•Multiple passes needed to achieve usable code.
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To conclude COMP-520
• “Reflections on Trusting Trust” – Ken Thompson

• Idea: how to compile bugs/backdoors in a compiler that can’t 
be discovered unless you analyze the assembly code

• You learned quite a bit more than “how to build a basic 
compiler that isn’t practical”
• Use techniques and theory from this class to build modern 

and competitive compilers. (Recall MSVS example)
• Ideally, you also learned the importance of time 

management when you have a month to work on a 
programming project.
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See you at the final!

5/9 at 4pm

Have a great summer!
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End

59
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